Hi everyone! We're hard at work trying to keep our community clean, so if you see any spam, please report it here and we'll review ASAP! Thanks a million!
Auroras are the result of the emissions of photons in the Earth's upper atmosphere, above 80 km (50 miles), from ionized nitrogen atoms regaining an electron, and oxygen and nitrogen atoms returning from an excited state to ground state. They are ionized or excited by the collision of solar wind particles being funneled down and accelerated along the Earth's magnetic field lines; excitation energy is lost by the emission of a photon of light, or by collision with another atom or molecule: oxygen emissions Green or brownish-red, depending on the amount of energy absorbed. nitrogen emissions Blue or red. Blue if the atom regains an electron after it has been ionized. Red if returning to ground state from an excited state. Oxygen is unusual in terms of its return to ground state: it can take three quarters of a second to emit green light and up to two minutes to emit red. Collisions with other atoms or molecules will absorb the excitation energy and prevent emission. The very top of the atmosphere is both a higher percentage of oxygen, and so thin that such collisions are rare enough to allow time for oxygen to emit red. Collisions become more frequent progressing down into the atmosphere, so that red emissions do not have time to happen, and eventually even green light emissions are prevented. This is why there is a colour differential with altitude; at high altitude oxygen red dominates, then oxygen green and nitrogen blue/red, then finally nitrogen blue/red when collisions prevent oxygen from emitting anything. Green is the most common of all auroras. Behind it is pink, a mixture of light green and red, followed by pure red, yellow (a mixture of red and blue), and lastly pure blue.
leo19
Uploaded by leo19 on
.
Red Green Aurora - Desktop Nexus NatureDownload free wallpapers and background images: Red Green Aurora . Desktop Nexus Nature background ID 382154. Auroras are the result of the emissions of photons in the Earth's upper atmosphere, above 80 km (50 miles), from ionized nitrogen atoms regaining an electron, and oxygen and nitrogen atoms returning from an excited state to ground state. They are ionized or excited by the collision of solar wind particles being funneled down and accelerated along the Earth's magnetic field lines; excitation energy is lost by the emission of a photon of light, or by collision with another atom or molecule: oxygen emissions Green or brownish-red, depending on the amount of energy absorbed. nitrogen emissions Blue or red. Blue if the atom regains an electron after it has been ionized. Red if returning to ground state from an excited state. Oxygen is unusual in terms of its return to ground state: it can take three quarters of a second to emit green light and up to two minutes to emit red. Collisions with other atoms or molecules will absorb the excitation energy and prevent emission. The very top of the atmosphere is both a higher percentage of oxygen, and so thin that such collisions are rare enough to allow time for oxygen to emit red. Collisions become more frequent progressing down into the atmosphere, so that red emissions do not have time to happen, and eventually even green light emissions are prevented. This is why there is a colour differential with altitude; at high altitude oxygen red dominates, then oxygen green and nitrogen blue/red, then finally nitrogen blue/red when collisions prevent oxygen from emitting anything. Green is the most common of all auroras. Behind it is pink, a mixture of light green and red, followed by pure red, yellow (a mixture of red and blue), and lastly pure blue.
Rating: 4.1
Total Downloads: 239
Times Favorited: 1
Uploaded By: leo19
Date Uploaded: June 11, 2010
Filename: ed_and_green_aurora.jpg
Original Resolution: 1536x1145
File Size: 1.18MB
Category: Forces of Nature